Cluster member publishes in PNAS

January 08, 2021

Hippocampus In the transgenic mice (Pigv341E; right) there are fewer vesicles (green) in which neurotransmitters are stored than in the control animals (left). This could be responsible for the synaptic defect. © Miguel Rodriguez de los Santos


Intelligence deficit: Conclusion from the mouse to the human being

The group from Peter Krawitz, member of the Cluster of Excellence ImmunoSensation create an animal model for studying GPI anchor deficiencies Impaired intelligence, movement disorders and developmental delays are typical for a group of rare diseases that belong to GPI anchor deficiencies. Researchers from the University of Bonn and the Max Planck Institute for Molecular Genetics used genetic engineering methods to create a mouse that mimics these patients very well. Studies in this animal model suggest that in GPI anchor deficiencies, a gene mutation impairs the transmission of stimuli at the synapses in the brain. This may explain the impairments associated with the disease. The results are now published in the journal "Proceedings of the National Academy of Sciences of the United States of America (PNAS)".

"GPI anchor deficiencies comprise a group of rare diseases that primarily cause intellectual deficits and developmental delays," explains Prof. Dr. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at the University Hospital Bonn, who started his research at the Charité - Universitätsmedizin Berlin and continued it at the University Hospital Bonn.

Find here the english and german press release.

Publication: Miguel Rodríguez de los Santos, Marion Rivalan, Friederike S. David, Alexander Stumpf, Julika Pitsch, Despina Tsortouktzidis, Laura Moreno Velasquez, Anne Voigt, Daniele Mattei, Melissa Long, Guido Vogt, Alexej Knaus, Björn Fischer-Zirnsak, Lars Wittler, Bernd Timmermann, Peter N. Robinson, Denise Horn, Stefan Mundlos, Uwe Kornak, Albert J. Becker, Dietmar Schmitz, York Winter, Peter M. Krawitz: A CRISPR-Cas9-engineered mouse model for GPI anchor deficiency mirrors human phenotype and exhibits hippocampal synaptic dysfunctions, Proceedings of the National Academy of Sciences of the United States of America (PNAS), DOI: 10.1073/pnas.2014481118


Prof. Dr. med. Dipl. Phys. Peter Krawitz
Institut für Genomische Statistik und Bioinformatik
Universitätsklinikum Bonn
Tel. 0228/28714799