ImmunoSensation - the immune sensory system

Back
Chem Biol. 2013 Feb 26.

A selective inhibitor of heme biosynthesis in endosymbiotic bacteria elicits antifilarial activity in vitro.

Lentz CS, Halls V, Hannam JS, Niebel B, Strübing U, Mayer G, Hoerauf A, Famulok M, Pfarr KM

Lymphatic filariasis and onchocerciasis are severe diseases caused by filarial worms and affect more than 150 million people worldwide. Endosymbiotic α-proteobacteria Wolbachia are essential for these parasites throughout their life cycle. Using a high-throughput chemical screen, we identified a benzimidazole compound, wALADin1, that selectively targets the δ-aminolevulinic acid dehydratase (ALAD) of Wolbachia (wALAD) and exhibits macrofilaricidal effects on Wolbachia-containing filarial worms in vitro. wALADin1 is a mixed competitive/noncompetitive inhibitor that interferes with the Mg(2+)-induced activation of wALAD. This mechanism inherently excludes activity against the Zn(2+)-dependent human ortholog and might be translatable to Mg(2+)-responsive orthologs of other bacterial or protozoan pathogens. The specificity profile of wALADin1 derivatives reveals chemical features responsible for inhibitory potency and species selectivity. Our findings validate wALADins as a basis for developing potent leads that meet current requirements for antifilarial drugs.

PMID: 23438747