Skip to main content
Mitsutoshi Yoneyama, Takashi Fujita and Hiroki Kato

News categories: Publication

20 years RIG-I

An intriguing review reflecting on the development in the RIG-I research published in 'Immunity'.

Prof. Takashi Fujita from the Institute of Virus Research at the university of Bonn, Prof. Mitsutoshi Yoneyama from the Research Institute of Disaster Medicine at the Chiba University and Prof. Hiroki Kato from the Institute of Cardiovascular Immunology at the University Hospital in Bonn now published a collaborative review article in celebration of 20 years after the discovery of RIG-I. The article delves into the captivating realm of RIG-I research, exploring the advancements made over the past two decades. Published in the latest edition of "Immunity," the review sheds light on the critical role of Retinoic Acid-Inducible Gene I (RIG-I) receptors in the innate immune system.

Recognized as pattern recognition receptors (PRRs), RIG-I receptors play a crucial role in detecting viral RNA and initiating antiviral responses. Their discovery in the early 2000s revolutionized virology research, positioning RIG-I receptors as vital targets for therapeutic intervention against viral infections. Moreover, their involvement in autoimmune diseases, cancer immunotherapy, and vaccine development underscores their broad significance in biomedical research.

Summary

The RIG-I like receptor (RLR) is crucial for pathogen detection and triggering immune responses, and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLR and the mechanism of sensing non-self RNA are described. Usually, self-RNA is refractory to RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLR involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
 

Publication:

Mitsutoshi Yoneyama, Hiroki Kato, Takashi Fujita (2024), Volume 57, Issue 4, Pages 731-751

Physiological functions of RIG-I-like receptors

DOI: https://doi.org/10.1016/j.immuni.2024.03.003

Contact:

Prof. Hiroki Kato
Institute of Cardiovascular Immunology
University Hospital Bonn
E-mail: hkato@uni-bonn.de

Related news

Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News Icon

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry
Collage Boztug Kalinichenko Huemer 1200px

News categories: Publication

How immune cells deliver their deadly cargo

Precision is crucial for immune cells: natural killer (NK) cells and T cells eliminate infected or transformed cells by releasing targeted, highly toxic particles. A new study from the CeMM (Research Center for Molecular Medicine of the Austrian Academy of Sciences), the St. Anna Children’s Cancer Research Institute, the Medical University of Vienna, the Medical University of Graz, the University Hospital Bonn (UKB) and the University of Bonn offers deeper insight into how these so-called cytotoxic granules are released.
View entry

Back to the news overview