Skip to main content
News Icon

News categories: Publication

A new tool to study signaling with the help of nanobodies

Combining optogenetics with nanobody technology

A new study of the groups from Dagmar Wachten and Florian I. Schmidt from the Institute of Innate Immunity shows the capability of combining two different techniques for studying unknown processes. The results were published in the Journal eLife. Using a nanobody-based targeting approach in combination with optogenetic tools could overcome the loss of protein function observed after fusion to ciliary targeting sequences. Hereby the ciliary signaling and function can be studied in mammalian cells an in vivo in zebrafish.

Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.

Related news

Collage Boztug Kalinichenko Huemer 1200px

News categories: Publication

How immune cells deliver their deadly cargo

Precision is crucial for immune cells: natural killer (NK) cells and T cells eliminate infected or transformed cells by releasing targeted, highly toxic particles. A new study from the CeMM (Research Center for Molecular Medicine of the Austrian Academy of Sciences), the St. Anna Children’s Cancer Research Institute, the Medical University of Vienna, the Medical University of Graz, the University Hospital Bonn (UKB) and the University of Bonn offers deeper insight into how these so-called cytotoxic granules are released.
View entry
Kurts_PM_161025

News categories: Publication

Less can be more: Low-dose steroids could effectively treat severe kidney inflammation

Study by researchers in Bonn and Hamburg shows that lower doses of cortisone may be sufficient for aggressive kidney inflammation.
View entry
News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry

Back to the news overview