Skip to main content
News Icon

News categories: Publication

Cerebral dysfunctions caused by sepsis during aging

A differentiated look at the relationship between sepsis and acute cerebral dysfunction

Sepsis occurs when the body's own immune reactions against an infection inflicts damage to its own organs and tissues. Such systemic inflammation is a life-threatening condition and one of the most severe complications of infectious diseases. It may be caused by bacteria, viruses, fungi or parasites.

Systemic inflammations caused by Sepsis may induce an acute cerebral dysfunction known as sepsis- associated encephalopathy (SAE). Recent data from intensive care units show, that half of all patients with sepsis also develop SAE. Patients surviving a sepsis show an increased prevalence of sustained cognitive impairments for several years after initial sepsis onset.

Prof. Michael Heneka is Director of the Department of Neurodegenerative Disorders and a member of the Cluster of Excellence ImmunoSensation2 at the University Clinics Bonn. Heneka's and his team's efforts in basic and translational research focus on the field of neurodegeneration and neuroinflammation: Besides Alzeimers disease, amyotrophic lateral sclerosis, and multiple sclerosis, Prof. Henekas research is focssed on septic encephalopathy. Together with young researcher Tatsuya Manabe, Prof. Heneka now published a nuanced review on the relationship between sepsis and acute cerebral dysfunction.

Until today, it is largely unclear why SEA is developed only by some but not all sepsis patients. This also holds true for the factors determining the persistence of SAE. Based on the chronology of pathology and the dynamic changes in cognition upon sepsis onset, Heneka and Manabe dissect the cerebral effects of sepsis. The scientists discuss sepsis associated neuroinflammation, alternations in neuronal synapses as well as neurovascular changes. They also outline potential factors contributing to the development and persistence of SAE in older patients. In focus are both medical issues like sedatives and their side effects, as well as conditions like renal dysfunction or latent virus reactivation.

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) was reported to cause viral sepsis in more than half of the hospitalized patients suffering from severe Covid-19, the researchers close their consideration with a linking to COVID-19: Recent data shows that COVID-19 infections can lead to the loss of neuron and neuronal integrity and hence impair brain functioning. The underlying mechanisms remain to be elucidated, but may include encephalitis, vasculopathy or vasculitis, effects of systemic inflammation, induction of autoimmune reactions and peripheral organ dysfunctions. Hence, Heneka and Manabe postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.

Tatsuya Manabe has joined the Heneka lab as a PhD student in 2017. He has been fascinated with the significant roles of the innate immunity in neurodegenerative diseases such as Alzheimer’s disease. His current interest focuses on the microglia-synapse interactions and innate immune memory in particular after the systemic inflammation, on the basis of which he has been working for the sepsis-associated encephalopathy project.


Publication

Tatsuya Manabe and Michael T. Heneka: Cerebral dysfunctions caused by sepsis during aging. Nature Reviews Immunology. https://www.nature.com/articles/s41577-021-00643-7

Related news

The human P2X4 receptor

News categories: Publication

A starting point for the development of new pain and cancer drugs

The human P2X4 receptor plays an important role in chronic pain, inflammation and some types of cancer. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have now discovered a mechanism that can inhibit this receptor. The results were recently published in the scientific journal Nature Communications and open up a pathway for the development of new drugs. A study carried out by the University of Bonn and the University Hospital Bonn throws light on how P2X2 can be inhibited. The results have recently been published in Nature Communications.
View entry
Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News_Proebstel

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry

Back to the news overview