Skip to main content
News Beck 10.2019
An interneuron (bright, with long appendages) from the hippocampus of the rat. The finely branched axon (top left cloud) surrounds the cell bodies of pyramidal cells and can inhibit these effectively.
© Leonie Pothmann/Uni Bonn

News categories: Publication

Epilepsy: Function of "brake cells" disrupted

In some forms of epilepsy, the function of certain "brake cells" in the brain is presumed to be disrupted. This may be one of the reasons why the electrical malfunction is able to spread from the point of origin across large parts of the brain. A current study by the University of Bonn with members of the cluster of excellence ImmunoSensation2, in which researchers from Lisbon were also involved, points in this direction. The results are published in the renowned "Journal of Neuroscience".

Publication

Leonie Pothmann, Christian Klos, Oliver Braganza, Sarah Schmidt, Oihane Horno, Raoul-Martin Memmesheimer and Heinz Beck: Altered dynamics of canonical feed-back inhibition predicts increased burst transmission in chronic epilepsy; The Journal Of Neuroscience; https://doi.org/10.1523/JNEUROSCI.2594-18.2019

Related news

News Ludwig

News categories: Publication

New findings on infection with the Epstein-Barr virus

The Epstein-Barr virus (EBV) can cause certain types of cancer or autoimmune diseases, but how the body controls this common viral infection is largely unknown. Bonn researchers have now identified genetic and non-genetic factors that help the body fight EBV. To do this, they evaluated genome sequencing data, which is actually intended for characterizing the human genome, in a new way. Using the new technique, they were able to estimate the amount of EBV in the blood and find correlations in large health data sets. Their findings have now been published in the renowned journal Nature.
View entry
News Icon

News categories: Publication

New insights into the human immune defense against poxviruses

An international research team involving Bonn scientist has made an important contribution to understanding the human immune response to poxviruses: The scientists were able to show for the first time that different human cell types recognize poxviruses via different sensors in order to trigger inflammatory responses. At the same time, the team developed the world's first nanobodies that can specifically block the DNA sensor AIM2 – a tool that opens up new possibilities for inflammation and infection research. The paper has now been published in The EMBO Journal.
View entry
News Icon

News categories: Publication

Multiple Sclerosis: Potential biomarker linked to progression and brain inflammation identified

Better ways to detect ongoing brain damage in multiple sclerosis (MS) are urgently needed. An international team of scientists, including ImmunoSensation³ member Prof. Anne-Katrin Pröbstel, has identified a molecular circuit that drives brain injury in MS. In a mouse model, blocking the enzyme Bruton's tyrosine kinase prevented harmful clustering of immune cell and brain tissue demage. Patient data revealed the same immune signaling pattern, suggesting strong translational potential for diagnosis. The study was recently published in Nature Immunology.
Full publication

Back to the news overview