Skip to main content
How immune cells communicate to fight viruses

News categories: Publication

How immune cells communicate to fight viruses

Bonn researchers develop new techniques to analyse the communication of immune cells in the defence against infection.

Chemokines are signalling proteins that orchestrate the interaction of immune cells against pathogens and tumours. To understand this complex network, various techniques have been developed to identify chemokine-producing cells. However, it has not yet been possible to determine which cells react to these chemokines. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have developed a new class of genetically modified mice that enables the simultaneous identification of chemokine producers and sensors. Using the chemokine Ccl3 as a “proof of principle”, they discovered that its function in the immune defence against viruses is different than had been previously assumed. Their results have now been published in the "Journal of Experimental Medicine".

Our immune response to infections is critically controlled by chemokines. In order to understand how these signalling proteins coordinate immune cells, researchers from Bonn took a closer look at the chemokine Ccl3. Using a novel technology known as Ccl3-EASER mice, they investigated its role in coordinating the immune response to cytomegalovirus (CMV) infection, which can lead to severe diseases in immunocompromised individuals. "Until now, it was thought that certain macrophages, cells which colonize all organs as immune guardians, produce Ccl3 to attract antiviral immune cells," says co-senior author Prof. Dr. Christian Kurts, Director of the Institute of Molecular Medicine and Experimental Immunology (IMMEI) at the UKB. He is also a member of the Transdisciplinary Research Area 3 (TRA 3) "Life & Health" and the Cluster of Excellence ImmunoSensation2 at the University of Bonn.

NK cells are both chemokine producers and sensors

"However, we actually found that the natural killer cells - NK cells for short - are the most important Ccl3 producers during CMV infection," says co-senior author Prof. Dr. Natalio Garbi, research group leader from IMMEI at the UKB. He is also a member of the Cluster of Excellence ImmunoSensation2 at the University of Bonn. NK cells are white blood cells that can directly destroy virus-infected body cells. The scientists found that NK cells are in a permanent alarm mode to be ready for rapid Ccl3 production. As soon as a viral infection occurs, the body releases type I interferon as an alarm signal. This triggers the NK cells to rapidly produce the chemokine Ccl3. "However, NK cells are not only the cellular source, i.e. the producers of Ccl3, but also the main sensors for the chemokine in this context," says co-senior author Prof. Dr. Niels A. Lemmermann, research group leader from the Institute of Virology at the UKB and member of the Cluster of Excellence ImmunoSensation2 at the University of Bonn. This means that Ccl3 acts as an auto/paracrine signal through which NK cells communicate directly with each other and coordinate their antiviral response.

"The experimental strategy used here is completely new. It can also be used for messenger substances other than Ccl3, which are released during various infections, diverse forms of inflammation or cancers," explains Dr. Maria Belen Rodrigo, first author and scientist at the IMMEI of the UKB. With this work, the Bonn researchers have succeeded in gaining a better understanding of the complex choreography of immune cells in the defence against viruses.

Sponsorship:

The study was funded by the German Research Foundation (DFG) [SFB TRR 237, SFB 1454, SFB 1292/2] and the Cluster of Excellence ImmunoSensation2 of the University of Bonn.

Publication:

M. Belen Rodrigo et al. (2024)

Dual fluorescence reporter mice for Ccl3 transcription, translation and intercellular communication

Journal of Experimental Medicine; DOI: https://doi.org/10.1084/jem.20231814

Contact:

Prof. Dr. Christian Kurts

Institute of Molecular Medicine and Experimental Immunology (IMMEI)

Bonn University Hospital

TRA Life & Health, ImmunoSensation2, University of Bonn

Phone: +49-(0) 228-287 11050

E-Mail: ckurts@uni-bonn.de

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview