Skip to main content
Domnica Luca AG Kato

News categories: Publication

Dysregulation of T cell homeostasis

Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling

The research team of Prof. Dr. Hiroki Kato at the Institute of Cardiovascular Immunology is dedicated to understanding the intricate mechanisms of immune responses in the context of viral infections and autoimmune diseases. They are particularly interested in exploring how cytoplasmic RNA sensors, like MDA5, differentiate between viral RNAs and self-RNAs, initiating type I interferons (IFNs) as anti-viral defense. However, mutations in MDA5 can lead to autoimmune diseases. Complementary to that, Domnica Luca et al. recently published her findings in Science Advances with the title "Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling."


Abstract: ADAR1 deficiency constitutively activates MDA5 and causes type I IFN-driven autoimmune diseases. We found a significant reduction in the regulatory T cell (Treg) population in patients with type I interferonopathies caused by mutations in the ADAR1 or IFIH1 gene, encoding MDA5. We analyzed the underlying mechanisms using murine models and found that Treg-specific Adar1 deletion caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Treg-specific expression of MDA5 gain-of-function mutant also reduced the peripheral Treg population via apoptosis, resulting in severe autoimmune symptoms. However, shut-down of MDA5 signaling in Adar1-deficient Tregs still induced eIF-2α-mediated protein synthesis shut-off, leading to Treg loss and lethality. Altogether, our results highlight the dysregulation of Treg homeostasis in Adar1 deficiency as a key determinant for type I interferonopathies.

Publication:

Luca, D., et al. (2024)

Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling

Science Advances

DOI: 10.1126/sciadv.adk0820

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview