Skip to main content
News Icon

News categories: Publication

Microtubules control migrating cells

Scientists from the Cluster of Excellence ImmunoSensation and the Institute of Science and Technology Austria published their recent findings about microtubules controling migrating cells in the Journal of Cell Biology. Cells need to navigate throughout the body. How they find their right way and how they adapt their body size to moving into the right direction is poorly understood. Here, scientists demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. Prof. Eva Kiermaier is member of the Cluster of Excellence ImmunoSensation2.


The group of Eva Kiermaier focuses on the contribution of the cytoskeleton during innate and adaptive immune responses. Dendritic cells (DCs) represent the most potent antigen presenting cells of the innate immune system. They are key mediators for the induction of protective immunity as well as maintenance of self-tolerance. As such, DCs represent an outstanding population of cells, which mediate three fundamentally important tasks: antigen capture and presentation, migration and T cell activation. The group studies how cytoskeletal components, in particular centrosomes and microtubules, impact immune cell effector functions such as antigen presentation and migration and their behavior upon lymphocyte cell-cell interactions.

Related news

News Icon

News categories: Publication

Multiple Sclerosis: Potential biomarker linked to progression and brain inflammation identified

Better ways to detect ongoing brain damage in multiple sclerosis (MS) are urgently needed. An international team of scientists, including ImmunoSensation³ member Prof. Anne-Katrin Pröbstel, has identified a molecular circuit that drives brain injury in MS. In a mouse model, blocking the enzyme Bruton's tyrosine kinase prevented harmful clustering of immune cell and brain tissue demage. Patient data revealed the same immune signaling pattern, suggesting strong translational potential for diagnosis. The study was recently published in Nature Immunology.
Full publication
Symbol Image

News categories: Publication

Instructions for building antibodies decoded

MOG Antibody-associated Disease (MOGAD) is a rare autoimmune disease of the central nervous system. The blood of patients contains antibodies against myelin oligodendrocyte glycoprotein (MOG), a protein in the myelin layer that surrounds the neurons in the brain. It is believed that these antibodies contribute to the destruction of this protective layer in the brain. Researchers at the University Hospital Bonn (UKB) and the Universities of Basel and Bonn, in collaboration with an international team, have now deciphered the construction plan of the anti-MOG antibodies.
View entry
News Icon

News categories: Publication

A fatal mix-up: how certain gut bacteria drive multiple sclerosis

If gut bacteria are too similar to the protective layer of nerves, they can misdirect the immune system and cause it to attack its own nervous system. This mechanism can accelerate the progression of multiple sclerosis, as researchers at the University of Basel, together with colleagues in Bonn, have shown in trials with mice. However, their results also open up opportunities for treatments that make use of the microbiome. The results have now been published in the journal Gut Microbes.
View entry

Back to the news overview