Skip to main content
PM Prof Franklin

News categories: Publication

New pathway in immune defense discovered

Bonn researchers decode the interaction of monocytes and platelets in human blood

Monocytes, a special type of white blood cell, secrete cytokines as inflammatory messengers that are crucial for an appropriate immune response. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have now discovered that platelets, also known as thrombocytes, communicate with monocytes and increase their inflammatory capacity. By understanding the platelet-monocyte interaction, they hope to improve the treatment of immune disorders and associated diseases. The results of the study have now been published in the renowned journal "EMBO Molecular Medicine" and will be featured on the cover of August issue. 

Monocytes are white blood cells, known as leukocytes. They are an important part of the innate immune system and contribute to host defense in the blood by secreting large quantities of pro-inflammatory cytokines. Abnormal activity of monocytes leads to hyperinflammation, i.e. very severe inflammation, as well as life-threatening cytokine storms. On the other hand, disturbed monocyte function is associated with "immune paralysis". In this condition, the immune system's ability to fight off invaders such as viruses and bacteria is inhibited. This increases susceptibility to infections. "It is therefore crucial to understand how the functions of monocytes are regulated," says senior and corresponding author Prof. Dr. Bernardo Franklin from the Institute of Innate Immunity at the UKB and the Cluster of Excellence ImmunoSensation2 at the University of Bonn, explaining the motivation to investigate the role of platelets in the regulation of monocyte-induced inflammation. 

Platelets as a central checkpoint in immune defense 

Platelets play a central role in blood clotting, but are also thought to perform important functions in the immune system. Prof. Franklin's research team has already identified platelets as an important regulator of inflammation. They now report that a low platelet count in the rare blood disorder immune thrombocytopenia (ITP) or the artificial removal of platelets from healthy monocytes results in "immunoparalysis". This is characterized by a disturbed cytokine reaction and is an immunological challenge. "Remarkably, supplementing monocytes with fresh platelets reverses this condition and restores the monocyte cytokine response," says corresponding and co-first author Dr. Ibrahim Hawwari, a postdoctoral fellow of the University of Bonn at the Institute of Innate Immunity at the UKB. The Bonn researchers discovered that the pro-inflammatory signals, including NF-κB and p38 MAPK, propagate from platelets to monocytes and maintain their inflammatory capacity. "Platelet vesicles as an extended arm of platelets control this intercellular communication," says cofirst author Lukas Roßnagel, PhD student ot the University of Bonn at the Institute of Innate Immunity of the UKB. 

The results of the study point to a new intercellular communication mechanism in which platelets regulate monocyte function. "Clinically, this suggests potential therapeutic strategies to counteract monocyte immune paralysis in conditions such as ITP and other inflammatory diseases with the addition of platelets," says Prof. Franklin, who hopes that an understanding of platelet-monocyte interactions will lead to improved treatment of immune disorders and related diseases. 

Publication:

Ibrahim Hawwari, Lukas Rossnagel et al. (2024)

Platelet transcription factors license the pro-inflammatory cytokine response of human monocytes 

EMBO Molecular Medicine, DOI: https://doi.org/10.1038/s44321-024-00093-3

Scientific Contacts:

Prof. Dr. Bernardo S. Franklin 

Institute for Innate Immunity 

Bonn University Hospital 

Cluster of Excellence ImmunoSensation2 ,University of Bonn 

Phone +49 228 28751981 

E-mail: franklin@uni-bonn.de 

 

Dr. Ibrahim Hawwari 

Institute for Innate Immunity 

Bonn University Hospital 

Phone: +49 (228) 287 51202 

E-mail: ihawwari@uni-bonn.de

Press contact:

Dr. Inka Väth Deputy 

Press Officer at the University Hospital Bonn (UKB) 

Communications and Media Office at Bonn University Hospital 

Phone: (+49) 228 287-10596 

E-mail: inka.vaeth@ukbonn.de

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview