Skip to main content
Publikation AG Wehner

News categories: Publication

The role of glial IL-1R signaling in colorectal cancer

Study published in 'Nature Communications'

Interleukin-1 receptor (IL-1R) signaling plays a crucial role in the immune system, mediating inflammatory responses and maintaining homeostasis. This signaling pathway is vital for the activation and regulation of immune cells, helping the body to combat infections and other threats. However, its dysregulation has been implicated in various pathological conditions, including autoimmune diseases and cancer. One crucial player in intestinal IL-1R signaling is enteric glial cells. Enteric glia have been described as important regulators of intestinal inflammation, mediating immune responses i.e. via IL-1R. 

In colorectal cancer, IL-1R signaling has emerged as a key player in shaping the tumor microenvironment, influencing both tumor progression and the body's immune response. Understanding the precise mechanisms by which IL-1R signaling affects cancer development and progression is critical for developing targeted therapies that can modulate this pathway for better clinical outcomes.

A recent study from Sven Wehner’s group in Bonn and Gianluca Matteoli’s group from KU Leuven, Belgium, published in Nature Communications, explores the critical role of IL-1R signaling in enteric glia and their interaction with macrophages in colorectal cancer. This collaborative research discovered that IL-1R signaling in enteric glia is pivotal in promoting a pro-tumorigenic macrophage subtype. By investigating the crosstalk between enteric glial cells and immune cells, the study provides new insights into the tumor microenvironment and highlights potential therapeutic targets for colorectal cancer treatment. 

 

Abstract:

Enteric glia have been recently recognized as key components of the colonic tumor microenvironment indicating their potential role in colorectal cancer pathogenesis. Although enteric glia modulate immune responses in other intestinal diseases, their interaction with the colorectal cancer immune cell compartment remains unclear. Through a combination of single-cell and bulk RNA-sequencing, both in murine models and patients, here we find that enteric glia acquire an immunomodulatory phenotype by bi-directional communication with tumor-infiltrating monocytes. The latter direct a reactive enteric glial cell phenotypic and functional switch via glial IL-1R signaling. In turn, tumor glia promote monocyte differentiation towards pro-tumorigenic SPP1+ tumor-associated macrophages by IL-6 release. Enteric glia cell abundancy correlates with worse disease outcomes in preclinical models and colorectal cancer patients. Thereby, our study reveals a neuroimmune interaction between enteric glia and tumor-associated macrophages in the colorectal tumor microenvironment, providing insights into colorectal cancer pathogenesis.

Publication:

van Baarle, L., De Simone, V., Schneider, L. et al. 

IL-1R signaling drives enteric glia-macrophage interactions in colorectal cancer. 

Nature Communications (2024). https://doi.org/10.1038/s41467-024-50438-2

Contact:

Prof. Dr. Sven Wehner 

E-Mail: sven.wehner@ukbonn.de

Phone: (+49) 228 287 11007

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview