Skip to main content
Immunofluorescence staining of MAIT cells (green) next to mononuclear phagocytes (red) in kidney sections of mice with experimental glomerulonephritis. Cell nuclei in blue. Image: Nature Communications, DOI: 10.1038/s41467-023-43269-0

News categories: Publication

Vitamin B2 Derivatives Can Alleviate Chronic Kidney Inflammation

Researchers from the University Medical Center Hamburg-Eppendorf and the University Hospital Bonn have demonstrated that certain derivatives of vitamin B2 can alleviate chronic kidney inflammation in mice. Their findings have been published in the journal “Nature Communications.”

The term glomerulonephritis denotes several types of chronic kidney inflammation that can lead to the loss of renal function. Most of these conditions are due to autoaggressive immune responses that damage the kidney tissue. Although glomerulonephritis can be treated with immunosuppressive drugs such as corticosteroids, sometimes there is no way of stopping the self-destructive immune response. This may lead to a complete loss of renal function, necessitating continuous dialysis or a kidney transplant.

Researchers led by Professor Jan-Eric Turner from the Center for Internal Medicine at the University Medical Center Hamburg-Eppendorf and by Professor Christian Kurts from the Institute of Molecular Medicine and Experimental Immunology at the University Hospital Bonn, who is a member of the ImmunoSensation2 Cluster of Excellence and the Life & Health Transdisciplinary Research Area at the University of Bonn, have now found that certain vitamin metabolites can support the treatment of these conditions.

The researchers were the first to observe so called mucosal-associated invariant T cells (MAIT cells) ins both healthy and inflamed human kidneys. These rare immune cells are normally found in mucosal tissue such as in the intestine or lungs, where they perform sentinel functions against infections. “They are activated by metabolites of vitamins B2 and B9, which many infectious bacteria produce, and trigger defense responses as a result,” Professor Kurts says.

MAIT cells protecting the kidney

“In kidneys of glomerulonephritis patients and of mice with models of such diseases, these rare immune cells were activated by the resident kidneys immune cells —known as mononuclear phagocytes— that produce molecules that attracted the MAIT cells,” Professor Turner explains. Mice that lacked MAIT cells or in which mononuclear phagocytes could not attract MAIT cells experienced a more severe progression of their glomerulonephritis. Conversely, some of the mice that possessed more MAIT cells were protected.

These findings suggested that MAIT cells play a protective role in the kidney. In a therapeutic trial, the researchers treated mice suffering from glomerulonephritis with an artificial vitamin B2 metabolite that matched their natural ligand, and this alleviated the disease progression.

“The protective effect was not strong enough to prevent the experimental glomerulonephritis entirely,” Professor Kurts concedes. However, the researchers believe that it could be used to supplement existing therapies and make them more effective or to reduce the dose of glucocorticoids required in treatment. “More research and clinical trials will be needed before this becomes a viable option in therapy,” Professor Turner points out.

Institutions involved and funding secured:

The University Medical Center Hamburg-Eppendorf, the University Hospital Bonn and the University of Bonn were joined by Institut Curie in Paris, the University of Melbourne, EUROIMMUN in Lübeck and the Paul-Ehrlich-Institut in Langen for the study. It was supported by the Collaborative Research Center CRC1192 “Immune-Mediated Glomerular Diseases” of the German Research Foundation (DFG) in Hamburg and by the ImmunoSensation2 Cluster of Excellence at the University of Bonn.

Publication: Ann-Christin Gnirck, Marie-Sophie Philipp, Alex Waterhölter, Malte Wunderlich, Nikhat Shaikh, Virginia Adamiak, Lena Henneken, Tobias Kautz, Tingting Xiong, Daniela Klaus, Pascal Tomczyk, Mohamad M. Al-Bahra, Dirk Menche, Mark Walkenhorst, Olivier Lantz, Anne Willing, Manuel A. Friese, Tobias B. Huber, Christian F. Krebs, Ulf Panzer, Christian Kurts and Jan-Eric Turner: “Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease,” in “Nature Communications,” Internet: https://www.nature.com/articles/s41467-023-43269-0, DOI: https://doi.org/10.1038/s41467-023-43269-0

Media contact:

Prof. Dr. Christian Kurts
Institute of Experimental Immunology
University Hospital Bonn, University of Bonn
Phone: +49 228 287-11050
Email: ckurts@uni-bonn.de

Prof. Dr. Jan-Eric Turner
Center for Internal Medicine
University Medical Center Hamburg-Eppendorf
Phone: +49 40 7410-54167
Email: j.turner@uke.de

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview