Skip to main content
News Icon

News categories: Publication

COVID-19 has multiple faces

ImmunoSensation scientists present latest findings on the coronavirus in "Genome Medicine"

According to current studies, the COVID-19 disease which is caused by the SARS-CoV-2 coronavirus comprises at least five different variants. These differ in how the immune system responds to the infection. Researchers from the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, together with other experts from Germany, Greece and the Netherlands, present these findings in "Genome Medicine".

Their results may help to improve the treatment of the disease. Infection with SARS-CoV-2 can manifest in different ways: Many of those affected do not even seem to notice the presence of the virus in their bodies. In other cases, the effects can include flu-like symptoms and neurological disorders to severe and even life-threatening pneumonia. "The classification of COVID-19 into mild and severe courses falls short. The disease is much more diverse, and for each affected person, one certainly would want a therapy that is tailored to fit. What helps one person may be ineffective for another," said Dr. Anna Aschenbrenner, a scientist of the LIMES Institute at the University of Bonn and the DZNE's Systems Medicine division. "In this respect, it is obvious to want to understand what underlies these differences. If we can pin them down to scientific criteria and categorize patients accordingly, this increases the chances of effective treatment. We therefore took a look at the immune system. Because many studies are indicating that its response to infection with SARS-CoV-2 plays a crucial role in the course of COVID-19," said Aschenbrenner, who is a member of the "ImmunoSensation2" Cluster of Excellence at the University of Bonn.

Five Manifestations

"First of all, it is important to note that the expression patterns of immune cells in people with COVID-19 differ fundamentally from those in healthy individuals. The gene activity we can detect in the blood is strongly altered. But there are also striking differences among patients. On this basis, we have identified five different groups. We refer to them as molecular phenotypes," said Dr. Thomas Ulas, an expert in bioinformatics at the DZNE. "Two of them represent severe disease courses. The others have more moderate symptoms." The classification was based solely on transcriptome data. Only in retrospect, molecular phenotypes were matched to registered clinical courses.

COVID-19 Is Different

The researchers used their findings to compare COVID-19 with other diseases and also with data from healthy individuals. For this purpose, they were able to draw on data from the "Rhineland Study" - a population study conducted by the DZNE in the Bonn area - as well as on data from scientific databases. For the comparison, a large spectrum of diseases was considered: including viral infections such as influenza, infections with HIV and Zika, bacterial infections such as tuberculosis and bacterial sepsis, and inflammatory diseases such as rheumatoid arthritis. "All five COVID-19 phenotypes are different from the other diseases we studied," Ulas said, summing up the findings. "Apparently, COVID-19 has a unique biology that is reflected in the gene activity of immune cells in the blood. Insofar, expression analysis could be used to diagnose COVID-19. This would be an alternative or complement to current methods."


Publication

Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients, Aschenbrenner et al., Genome Medicine (2021), DOI: 10.1186/s13073-020-00823-5;

Contact

Dr. Anna Aschenbrenner

LIMES Institute at the University of Bonn; Systems

Medicine division at DZNE

Phone: +49 228 4330 2690

Email: a.aschenbrenner@uni-bonn.de

Related news

The human P2X4 receptor

News categories: Publication

A starting point for the development of new pain and cancer drugs

The human P2X4 receptor plays an important role in chronic pain, inflammation and some types of cancer. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have now discovered a mechanism that can inhibit this receptor. The results were recently published in the scientific journal Nature Communications and open up a pathway for the development of new drugs. A study carried out by the University of Bonn and the University Hospital Bonn throws light on how P2X2 can be inhibited. The results have recently been published in Nature Communications.
View entry
Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News_Proebstel

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry

Back to the news overview