Skip to main content
News Icon

News categories: Publication

Genetic disposition protects immune system from aging

A genetic disposition that plays a role in the development of the heart in the embryo also appears to play a key role in the human immune system. This is shown by a recent study led by the University of Bonn. When the gene is not active enough, the immune defense system undergoes characteristic changes, causing it to lose its effectiveness. Doctors speak of an aging immune system, as a similar effect can often be observed in older people. In the medium term, the results may contribute to reduce these age-related losses. The study is published in the journal Nature Immunology.

The gene with the cryptic abbreviation CRELD1 has so far been a mystery to science. It was known to play an important role in the development of the heart in the embryo. However, CRELD1 remains active after birth: Studies show that it is regularly produced in practically all cells of the body. For what purpose, however, was previously completely unknown.

The Bonn researchers used a novel approach to answer this question. Nowadays, scientific studies with human participants often include so-called transcriptome analyses. By these means, one can determine which genes are active to what extent in the respective test subjects. Researchers are also increasingly making the data they obtain available to colleagues, who can then use it to work on completely different matters. "And this is exactly what we did in our study," says Dr. Anna Aschenbrenner from the LIMES Institute at the University of Bonn and member of the ImmunoSensation² Cluster of Excellence.


Publication

Lorenzo Bonaguro, Maren Köhne, Lisa Schmidleithner, Jonas Schulte-Schrepping, Stefanie Warnat-Herresthal, Arik Horne, Paul Kern, Patrick Günther, Rob ter Horst, Martin Jaeger, Souad Rahmouni, Michel Georges, Christine S. Falk, Yang Li, Elvira Mass, Marc Beyer, Leo A. B. Joosten Mihai G. Netea, Thomas Ulas, Joachim L. Schultze and Anna C. Aschenbrenner: CRELD1 modulates homeostasis of the immune system in mice and humans. Nature Immunology;
https://www.nature.com/articles/s41590-020-00811-2

Media contact

Dr. Anna C. Aschenbrenner

LIMES-Institut der Universität Bonn

Tel.: +49 (0228) 73-62777 or +49 (0228)
4330-2690

E-mail: a.aschenbrenner@uni-bonn.de

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview