Skip to main content
News Icon

News categories: Publication

Hair loss gene discovery

Hairlessness, skin changes, a strong hypersensitivity to light: these are the symptoms of the so-called IFAP syndrome. Scientists from the universities of Beijing, Hamburg and Bonn have now identified a genetic defect that triggers the rare disorder. The results have been published in the "American Journal of Human Genetics". IFAP syndrome is very rare; Probably not even 100 people in Germany suffer from this congenital disorder. Those affected are sparsely hairy to complete hairlessness, even eyebrows and eyelashes may be missing. The skin is often keratinized; Sunlight or strong artificial light hurts the eyes. The abbreviation "IFAP" stands for the medical names of these three key symptoms.

In the medium term, the study could also open up new ways of treating IFAP syndrome. Perhaps, for example, the lack of cholesterol in the skin can be improved by special fatty ointments. However, further studies have to show whether this really works. The results already provide an insight into the diverse processes that must work together for the healthy development of skin and hair.


Publication

Huijun Wang u.a.: Mutations in SREBF1, Encoding Sterol Regulatory Element Binding Transcription Factor 1, Cause Autosomal Dominant IFAP Syndrome; American Journal of Human Genetics; DOI: https://doi.org/10.1016/j.ajhg.2020.05.006

Associated cluster scientists: Regina Betz

Related news

News Icon

News categories: Publication

New vulnerability of asthma immune cells discovered

Why do certain immune cells remain permanently active in allergic asthma – even in an environment that should actually damage them? A team from the University Hospital Bonn (UKB) and the University of Bonn has discovered that these cells only survive because they activate a special antioxidant protection mechanism. When this mechanism is blocked, allergic inflammation in mouse models decreases significantly. The results have now been published in the scientific journal Immunity.
View entry
The human P2X4 receptor

News categories: Publication

A starting point for the development of new pain and cancer drugs

The human P2X4 receptor plays an important role in chronic pain, inflammation and some types of cancer. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have now discovered a mechanism that can inhibit this receptor. The results were recently published in the scientific journal Nature Communications and open up a pathway for the development of new drugs. A study carried out by the University of Bonn and the University Hospital Bonn throws light on how P2X2 can be inhibited. The results have recently been published in Nature Communications.
View entry
Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry

Back to the news overview