Skip to main content
News Jung 09.2021
AG Jung: Julia Steinberg, Timo Wadenpohl, Jun. Prof. Dr. Stephanie Jung
© Katharina Wislsperger / UKB

News categories: Publication

How danger signaling is amplified in Influenza A-virus infected cells

Young research goup around Cluster Member Stephanie Jung shows how danger signaling is amplified in Influenza A-virus infected cells.

Influenza virus-induced acute respiratory infections occur in all parts of the world and represent a constant disease-burden. While the seasonal epidemic outbreaks are caused by Influenza-subtypes A and B, only Influenza-A strains are reported to have caused pandemic spreads. Overall, Influenza-A infections account for 250,000 to 300,000 deaths p.a.

To protect us from microbial threats, the innate immune system provides several immune sensing receptors. These recognize foreign microbial molecules and induce an immunological response. RNA-viruses like Influenza-A and Hepatitis-C are detected by the intracellular receptor RIG-I (retinoic acid inducible gene I). RIG-I binds to double-stranded viral RNA and hairpin structures of viral genomes. Upon activation, the receptor multimerizes and ultimately induces the cellular release of antiviral cytokines.

In a previous publication, Stephanie Jung and colleagues already described the role of endogenous RNA in an amplified RIG-I activation: Recognition of viral RNA by oligoadenylate synthase leads to activation of RNase L, which cleaves endogenous ribosomal RNAs. The resulting fragment acts as endogenous RIG-I ligand (eRL) and thereby amplifies the RIG-I mediated response to the viral thread.

Stephanie Jung and her team now provide evidence that eRL is generated in Influenza-A infected cells. Further they could show that the activation of RIG-I by eRL is independent of the direct recognition of viral RNAs by the receptor. The work thereby provides the foundation for further research on the physiological function of eRLs and their role in other viral infections.

Remarkably, the paper was published only a few months into first-author Julia Steinbergs PhD project, who started her work with Stephanie Jung in April 2021. “Sometimes things just run perfectly – even in the lab” Julia states. It is important to enable young scientists to publish early on during their PhD, Stephanie Jung is convinced. “With her first publication in hand, Julia can now pursue her main project with the maximum freedom possible”.

It is also the first publication for Stephanie Jung as Junior Professor for Cellular Virology and member of the Cluster of Excellence Immunosensation2. As group leader at the institute of Cardiovascular Immunology, her research is focused on the identification of immune-activating viral RNAs and the role of extracellular vesicles in viral infections.


Participating institutions and funding

The project was funded by the German Research Foundation (DFG) under the Germany’s Excellence Strategy – EXC2151 – 390873048.


Publication

Julia Steinberg, Timo Wadenpohl, Stephanie Jung: The Endogenous RIG-I Ligand Is Generated in Influenza A-Virus Infected Cells. Viruses. https://www.mdpi.com/1999-4915/13/8/1564


Contact

Jun. Prof. Dr. Stephanie Jung

University Bonn

University Hospital Bonn

stephanie.jung@ukbonn.de

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview