Skip to main content
News Icon

News categories: Publication

How tumor cells evade the immune system

A new study by the University of Bonn and research institutions in Australia and Switzerland shows the strategies that tumor cells use to avoid being attacked by the imune system.
The method developed for this work contributes to a better understanding of the "arms race" between immune defense and disease. The results could help to improve modern therapeutic approaches and were published in 'Immunity'.

Cancer cells differ from healthy body cells - by their appearance, by their behavior, by the genes that are active in them. Often this does not go unnoticed: the immune system registers that something is wrong and sends its troops to fight the tumor. However, this answer is often too weak to keep cancer at bay in the long term or even to destroy it. Scientists have therefore been trying to strengthen the immune system's response for many years.

Many tumors have developed strategies that can help them escape the immune system. "In our study, we examined what these strategies look like and what they depend on," explains Dr. Maike Effern from the Institute of Experimental Oncology at the University Hospital Bonn. "We focused on melanoma cells, i.e. black skin cancer."

"When T cells were directed against genes that are responsible for melanoma-typical traits, we observed that the cancer cells changed their appearance and suppressed these genes over time," explains Effern's colleague Dr. Nicole Glodde. "So they hid from the immune system."

"Our work may open the way to more effective immunotherapy," hopes Prof. Dr. Michael Hölzel, head of the Institute of Experimental Oncology at the University Hospital Bonn and member of the Cluster of Excellence ImmunoSensation at the University of Bonn. "The method we developed also allows us to better understand the processes by which cancer cells slip under the radar of the immune system."


Publication

Maike Effern, Nicole Glodde, Matthias Braun, Jana Liebing, Helena N. Boll, Michelle Yong, Emma Bawden, Daniel Hinze, Debby van den Boorn-Konijnenberg, Mila Daoud, Pia Aymans, Jennifer Landsberg, Mark J. Smyth, Lukas Flatz, Thomas Tüting, Tobias Bald, Thomas Gebhardt, Michael Hölzel: Adoptive T cell therapy targeting different gene products reveals diverse and context-dependent immune evasion in melanoma. Immunity

Contact

Prof. Dr. Michael Hölzel

Institute of Experimental Oncology, Unversity

Hospital Bonn

Phone: 0228/287-12170

E-Mail: michael.hoelzel@ukbonn.de

Related news

Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News Icon

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry
Collage Boztug Kalinichenko Huemer 1200px

News categories: Publication

How immune cells deliver their deadly cargo

Precision is crucial for immune cells: natural killer (NK) cells and T cells eliminate infected or transformed cells by releasing targeted, highly toxic particles. A new study from the CeMM (Research Center for Molecular Medicine of the Austrian Academy of Sciences), the St. Anna Children’s Cancer Research Institute, the Medical University of Vienna, the Medical University of Graz, the University Hospital Bonn (UKB) and the University of Bonn offers deeper insight into how these so-called cytotoxic granules are released.
View entry

Back to the news overview