Skip to main content
News Latz 12.2019
Investigated the fine-tuning of macrophages: Prof. Dr. Eicke Latz (left) and Mario Lauterbach (right) from the Institute of Innate Immunity at the University of Bonn.
© Rolf Müller/UKB

News categories: Publication

Macrophage Metabolism Publication in Immunity

Macrophages have two faces: In healthy tissue, they perform important tasks and support their environment. However during an infection, they stop this work and hunt down the pathogens instead. Upon coming into contact with bacteria they change their metabolism drastically within minutes. This is shown by a new study under the leadership of the University of Bonn, which has now been published in the journal "Immunity". In the medium term, the results may lead to new vaccination strategies, but also to new approaches for combating autoimmune diseases.

The Study was lead by Cluster Member and Speaker Prof. Eicke Latz.


Publication

Mario A. Lauterbach, Jasmin E. Hanke, Magdalini Serefidou, Matthew S. J. Mangan, Carl-Christian Kolbe, Timo Hess, Maximilian Rothe, Romina Kaiser, Florian Hoss, Jan Gehlen, Gudrun Engels, Maike Kreutzenbeck, Susanne V. Schmidt, Anette Christ, Axel Imhof, Karsten Hiller & Eicke Latz: Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase; Immunity; DOI: 10.1016/j.immuni.2019.11.009

Related news

News Icon

News categories: Publication

New insights into the human immune defense against poxviruses

An international research team involving Bonn scientist has made an important contribution to understanding the human immune response to poxviruses: The scientists were able to show for the first time that different human cell types recognize poxviruses via different sensors in order to trigger inflammatory responses. At the same time, the team developed the world's first nanobodies that can specifically block the DNA sensor AIM2 – a tool that opens up new possibilities for inflammation and infection research. The paper has now been published in The EMBO Journal.
View entry
News Icon

News categories: Publication

Multiple Sclerosis: Potential biomarker linked to progression and brain inflammation identified

Better ways to detect ongoing brain damage in multiple sclerosis (MS) are urgently needed. An international team of scientists, including ImmunoSensation³ member Prof. Anne-Katrin Pröbstel, has identified a molecular circuit that drives brain injury in MS. In a mouse model, blocking the enzyme Bruton's tyrosine kinase prevented harmful clustering of immune cell and brain tissue demage. Patient data revealed the same immune signaling pattern, suggesting strong translational potential for diagnosis. The study was recently published in Nature Immunology.
Full publication
Symbol Image

News categories: Publication

Instructions for building antibodies decoded

MOG Antibody-associated Disease (MOGAD) is a rare autoimmune disease of the central nervous system. The blood of patients contains antibodies against myelin oligodendrocyte glycoprotein (MOG), a protein in the myelin layer that surrounds the neurons in the brain. It is believed that these antibodies contribute to the destruction of this protective layer in the brain. Researchers at the University Hospital Bonn (UKB) and the Universities of Basel and Bonn, in collaboration with an international team, have now deciphered the construction plan of the anti-MOG antibodies.
View entry

Back to the news overview