Skip to main content
News_Lukacs-Kornek
Prof. Veronica Lukacs-Kornek (left) and first author Dr. Sophia Rottmann (right)
© Lukacs-Kornek Lab

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.

 

What is it about?

The study investigates how the lungs adapt to nutritional challenge in obesity. The research team shows that obesity remodels the extracellular matrix in the lungs – the protein-based ‘scaffolding’ that gives the lungs their shape and stability. These changes in lung tissue are similar to those that normally occur with age and suggest that being overweight causes the lungs to ‘age’ prematurely.

 

How did they proceed?

The team used state-of-the-art multi-omics approaches to simultaneously examine proteins, fats and genes for specific questions. They combined this analysis with microscopic image analyses and experiments that show how the lungs actually work. The researchers compared the lungs of obese and lean mice, analysed human connective tissue cells in the lungs, and took a close look at the composition of the lungs – enabling them to understand both molecular and functional changes.

 

What is the key finding?

In obesity, lung fibroblasts, i.e. connective tissue cells, specifically accumulate fat, become more mobile and show early signs of premature ageing. At the same time, the matrisome, the ‘scaffolding’ of the lung, changes and the balance of certain protease inhibitor is disrupted. These changes make the lungs less elastic, which could explain why obesity is often associated with breathing difficulties. Interestingly, these changes are similar to those normally seen in older people – pointing to obesity as a driver of accelerated lung aging.

 

What was the biggest challenge?

One of the biggest challenges was developing methods to analyse the complex connective tissue of the lungs – the so-called fibroblastic stroma – which consists of many different cell types. In addition, the extracellular matrix is also difficult to study because many of its proteins are insoluble and have a very complex structure.

 

Publication
Sophia Rottmann, Jian Li, Jelena Zurkovic, Pablo Sierra Bravo, Andreas U. Lindner, Jie Qin, Sebastian Kallabis, Qi Mei, Xiansheng Liu, Christoph Thiele, Christoph Eckert, Felix Meissner, Veronika Lukacs-Kornek. Global matrisome changes in obese lung are linked to fibroblastic stroma and premature agingCell Reports (2025). DOI: 10.1016/j.celrep.2025.116285

 

Contact


Prof. Dr. Veronika Lukacs-Kornek
Institute of Experimental Immunology (IEI)

Medical Faculty, University of Bonn University Hospital of Bonn Sigmund-Freud-Strasse 25 53105 Bonn

mail: vlukacsk@uni-bonn.de

phone: +49 228 28711040

 

 

Related news

filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry
18062025_Mass_Nature_Figure Hepatozyten

News categories: Publication

How obesity also affects the next generation

Children born to obese mothers are at higher risk of developing metabolic disorders, even if they follow a healthy diet themselves. A new study from the group of Elvira Mass at the University of Bonn offers an explanation for this phenomenon. In obese mice, certain cells in the embryo’s liver are reprogrammed during pregnancy. This leads to long-term changes in the offspring’s metabolism. The researchers believe that these findings could also be relevant for humans. The study has now been published in the journal Nature.
View entry

Back to the news overview