Skip to main content
News Mass 02.2020
Microscopic image of green stained macrophages after a stroke: The additional red stained cell (top right) originates from the bone marrow, the pure green cells are resident microglia.
© AG Stumm

News categories: Publication

Publication by Mass Group in Nature Neuroscience

Stroke: Macrophages migrate from the blood

Molecular switch in bone marrow stem cells helps research into inflammatory processes in the brain.

Macrophages are part of the innate immune system and essential for brain development and function. Using a novel method, scientists from Jena University Hospital, the Cluster of Excellence ImmunoSensation and the Memorial Sloan Kettering Cancer Center in New York (USA) succeeded in visualizing macrophages that were formed in the bone marrow. In studies on mice, this technology enabled the researchers to observe that shortly after a stroke, numerous macrophages that had migrated from the blood begin to attack dead and adjacent healthy brain tissue. The results have now been published in the journal "Nature Neuroscience". Prof. Elvira Mass - leading author of this publication - is a member of the Cluster of Excellence ImmunoSensation2.


Publication

Yves Werner, Elvira Mass, Praveen Ashok Kumar, Thomas Ulas, Kristian Händler, Arik Horne, Kathrin Klee, Amelie Lupp, Dagmar Schütz, Friederike Saaber, Christoph Redecker, Joachim L. Schultze, Frederic Geissmann & Ralf Stumm: Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke, Nature Neuroscience, DOI: 10.1038/s41593-020-0585-y


Media contact

Prof. Dr. Elvira Mass

Life & Medical Sciences Institute (LIMES)

Universität Bonn

Tel. +49-(0)228-7362848

E-mail: elvira.mass@uni-bonn.de

Related news

Symbol Image

News categories: Publication

Instructions for building antibodies decoded

MOG Antibody-associated Disease (MOGAD) is a rare autoimmune disease of the central nervous system. The blood of patients contains antibodies against myelin oligodendrocyte glycoprotein (MOG), a protein in the myelin layer that surrounds the neurons in the brain. It is believed that these antibodies contribute to the destruction of this protective layer in the brain. Researchers at the University Hospital Bonn (UKB) and the Universities of Basel and Bonn, in collaboration with an international team, have now deciphered the construction plan of the anti-MOG antibodies.
View entry
News Icon

News categories: Publication

A fatal mix-up: how certain gut bacteria drive multiple sclerosis

If gut bacteria are too similar to the protective layer of nerves, they can misdirect the immune system and cause it to attack its own nervous system. This mechanism can accelerate the progression of multiple sclerosis, as researchers at the University of Basel, together with colleagues in Bonn, have shown in trials with mice. However, their results also open up opportunities for treatments that make use of the microbiome. The results have now been published in the journal Gut Microbes.
View entry
News Icon

News categories: Publication

New vulnerability of asthma immune cells discovered

Why do certain immune cells remain permanently active in allergic asthma – even in an environment that should actually damage them? A team from the University Hospital Bonn (UKB) and the University of Bonn has discovered that these cells only survive because they activate a special antioxidant protection mechanism. When this mechanism is blocked, allergic inflammation in mouse models decreases significantly. The results have now been published in the scientific journal Immunity.
View entry

Back to the news overview