Skip to main content
NLRP3 Alzheimers McManus
© McManus lab / DZNE

News categories: Publication

Reducing Neuroinflammation Could Help Fight Alzheimer’s

Alzheimer’s disease is the most common cause of dementia. A promising approach for its treatment is the prevention of inflammatory processes in the brain. An international team of scientists around Dr. Róisín McManus, Prof. Eicke Latz and Prof. Michael Heneka now provide new evidence supporting this approach and potentially contributing to the development of more effective therapies. The results have now been published in the journal “Immunity”.

Alzheimer’s disease is associated with the deposition of a protein called amyloid-beta in the brain. The aggregation of this protein gives rise to a chain of events, that ultimately harm neurons and lead to their loss. “Alzheimer’s disease involves a complex interaction of different mechanisms. One of these is neuroinflammation. That’s what we looked at in our studies. Specifically, we pharmacologically manipulated a molecular complex called the NLRP3 inflammasome. It is found in microglia, which are the immune cells of the brain,” says ImmunoSensation2 member Dr. Róisín McManus, research group leader at the Bonn DZNE and investigator at UKB’s Institute of Innate Immunity.

Previously unknown pathways

The NLRP3 inflammasome is like a control switch: In Alzheimer’s disease, its activation triggers an inflammatory response that harms neurons. For this reason, researchers have been exploring ways to inactivate the NLRP3 inflammasome using drugs. The current results support this approach. “It is known that inhibiting NLRP3 not only reduces neuroinflammation, but also helps microglia clear the harmful amyloid-beta deposits, a process called phagocytosis. The novelty of our findings is that they provide a better understanding of the important role that NLRP3 plays in microglia and we also unravel the mechanism behind why its inhibition is so beneficial”, says McManus. “In our studies we have identified previously unknown signaling pathways influenced by NLRP3. In particular, we found that NLRP3 regulates how microglia use nutrients and how these act on genes that have a major impact on the function of microglia. This is very relevant for their ability to carry out phagocytosis. These findings could help in the development of therapies for dementia. In any case, our research shows that NLRP3 is a promising target for the treatment of Alzheimer’s disease.”

International endeavor

In this project, the Bonn-based researchers collaborated with the Luxembourg Centre for Systems Biomedicine, University of California San Diego, Technische Universität Braunschweig, Novartis Switzerland and other institutions in Europe and beyond.

 

Publication

Róisín McManus et al. NLRP3-mediated glutaminolysis controls microglial phagocytosis to promote Alzheimer’s disease progression. Immunity (2025). DOI: 10.1016/j.immuni.2025.01.007

 

Contact

Dr. Róisín McManus

Translational Neuroimmunology (DZNE)

Venusberg-Campus 1, 53127 Bonn

Mail: Roisin.McManus@dzne.de 

Phone: +49 228 43302342

 

 

 

 

Spot on Science, Episode#13, Róisín McManus / New role for NLRP3 linked to Alzheimer's disease

Related news

Microglia interacting with T cells in the central nervous system of SPG15-deficient mice

News categories: Publication

Immune Cells Drive Congenital Paralysis Disease

Patients with spastic paraplegia type 15 develop movement disorders during adolescence that may ultimately require the use of a wheelchair. In the early stages of this rare hereditary disease the brain appears to play a major role by over-activating the immune system, as shown by a recent study published in the Journal of Experimental Medicine. The study was led by researchers at the University of Bonn and the German Center for Neurodegenerative Diseases (DZNE). These findings could also be relevant for Alzheimer's disease and other neurodegenerative conditions.
View entry
Scientists that contributed to the study

News categories: Publication

New way to prevent duodenal cancer

People with the hereditary disease familial adenomatous polyposis (FAP) have a greatly increased risk of developing a malignant tumor of the duodenum. Researchers at the University Hospital Bonn (UKB) and the Cluster of Excellence ImmunoSensation2 at the University of Bonn have now discovered a mechanism in the local immune system that can drive the development of cancer. They see this as a promising new approach to preventing duodenal carcinoma in people with FAP. The results have now been published in the journal "Nature Communications".
View entry
Kathrin Leppek Publication PM

News categories: Publication

Starting points for the control of protein synthesis

The research field of "cellular IRESes" lay dormant for decades, as there was no uniform standard of reliable methods for the clear characterization of these starting points for the ribosome-mediated control of gene expression. Researchers at the University Hospital Bonn (UKB) and the University of Bonn, in collaboration with Stanford University in California (USA), have now developed a toolbox as a new gold standard for this field. The results of their work have been published in The EMBO Journal.
View entry

Back to the news overview