Skip to main content
News Icon

News categories: Publication

The helicase DHX36 resolves G-quadruplex structures and supports stress response

The helicase DHX36 resolves G-quadruplex structures and supports stress response

DNA and RNA G-quadruplex structures are thermodynamically very stable arrangements of four nucleic acid strands, in which the guanines interact via Hoogsteen base pairing. It has been shown that the formation or resolution of RNA G‑quadruplex structures has severe impacts on diverse cellular processes such as transcription or translation. Interestingly, the formation of G-quadruplex structures in untranslated regions of mRNAs can render these mRNAs translationally inactive. The Paeschke lab characterized the RNA targets of DHX36, a 3′−5′ DEAH-box helicase, and discovered that it performs an important function in resolving G-quadruplex structures in the 5´ and 3' untranslated regions of mRNAs. The deletion of DHX36 resulted in an increased formation of stress granules and the phosphorylation of protein kinase R (PKR), caused by the accumulation of G-quadruplex structures in the cytoplasm. PKR is an important factor for the innate immune system and the integrated stress response. PKR is activated upon phosphorylation, which leads to the shutdown of global protein synthesis. In summary, the Paeschke lab could demonstrate that G-quadruplex structures within mRNAs and the cellular stress response are connected and that this connection is established via DHX36 and PKR.


Publication

https://www.immunosensation.de/research/publications/pubmed/dhx36-prevents-the-accumulation-of-translationally-inactive-mrnas-with-g4-structures-in-untranslated.html


Contact

Prof. Katrin Paeschke

Medical Clinic III

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview