Skip to main content
News Icon

News categories: Publication

Tumor microenvironment of Pancreatic Cancer

Discrepancies in the Tumor Microenvironment of Spontaneous and Orthotopic Murine Models of Pancreatic Cancer Uncover a New Immunostimulatory Phenotype for B Cells

While studying B cells in pancreatic cancer, we noticed an important discrepancy between human data, which suggest B cells contribute to the anti-tumor response, and mouse data, which indicate an immunosuppressive, protumorigenic role. Most of the murine data, however, derives from orthotopic models, in which a pancreatic-cell line is injected in the pancreas of healthy mice and tumors develop rapidly. In order to clarify this discrepancy, we assessed B-cell infiltrates from orthotopics and a genetic mouse model, the KPC mouse, in which tumors develop spontaneously in the course of several months, due to overexpression of mutated KRAS and P53 in pancreatic cells. Our data showed that orthotopic tumors have no immune-cell infiltrate, while KPC tumors do, better mimicking human cancers. Furthermore, infiltrating B cells present a very different phenotype from B cells residing in the spleen and lymph-nodes, showing signs of activation and differentiation, as well as expression of immune-stimulatory factors. Indeed, depletion of B cells with anti-CD20 treatment in KPC mice, did not cause a decrease in tumor growth. As B-cell infiltration correlated with T-cell and DC infiltration, we hypothesize that B cells infiltrating pancreatic tumors contribute to the adaptive anti-tumor response and therefore have tumor suppressing roles. However, B cells residing in secondary lymphoid organs have a different, possibly more immunosuppressive phenotype. Our results indicate that strategies to increase tumor infiltration by immune cells could be beneficial in the treatment of this dismal disease.


Publication

https://pubmed.ncbi.nlm.nih.gov/30972056/


Contact

Dr. Melania Capasso

DZNE

Related news

News_Lukacs-Kornek

News categories: Publication

Obesity causes lungs to age prematurely

What effects does severe obesity have on the lungs? A research team led by Prof. Dr. Veronika Lukacs-Kornek from the ‘ImmunoSensation2’ Cluster of Excellence at the University of Bonn and the Institute for Molecular Medicine and Experimental Immunology (IMMEI) at the University Hospital Bonn (UKB) investigated this question. The results suggest that obesity causes the lungs to age faster. The findings have been published in the journal ‘Cell Reports’.
View entry
filamentous actin structures in T cells

News categories: Publication

How Cell Skeleton Defects Can Teach Immunology

For immune cells, the actin cytoskeleton is more than a structural scaffold. Immune cells can migrate to sites of infection or form precise, short-lived contacts with other cells, by constantly reshaping their actin cytoskeleton. Genetic errors in the molecular machinery controlling actin dynamics lead to impaired immunity, and often to autoimmunity and chronic inflammation. An overview of the current state of research on immune-related actinopathies, prepared by scientists arround ImmunoSensation² member Prof. Kaan Boztug, has now been published in Nature Reviews Immunology.
View entry
Wachten lab

News categories: Publication

Fat cells under false command

Too much fat can be unhealthy: how fat cells, so-called adipocytes, develop, is crucial for the function of the fat tissue. That is why a team led by researchers from the University Hospital Bonn (UKB) and the University of Bonn investigated the influence of primary cilia dysfunction on adipocyte precursor cells in a mouse model. They found that overactivation of the Hedgehog signaling pathway causes abnormal development into connective tissue-like cells instead of white fat cells. Their findings have now been published in The EMBO Journal.
View entry

Back to the news overview